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SUMMARY

An improved hybrid method for computing unsteady compressible viscous flows is presented. This
method divides the computational domain into two zones. In the inner zone, the Navier–Stokes
equations are solved using a diagonal form of an alternating-direction implicit (ADI) approximate
factorisation procedure. In the outer zone, the unsteady full-potential equation (FPE) is solved. The two
zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic-
based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that
interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady
flows in non-vector processing machines. Applications of the method are presented for a F-5 wing in
steady and unsteady transonic flows. Steady surface pressures are in very good agreement with
experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours
show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes
equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Transonic flow is characterised by the presence of regions of supersonic flow embedded in a
subsonic region. Mathematically, the governing equations are inherently non-linear, a fact that
has prevented the application of traditional analytical tools and early numerical methods to
the analysis of such a flow condition. In addition, transonic flows tend to be more unsteady
and three-dimensional than purely subsonic and supersonic flows [1].

In non-steady flow situations, the presence of a supersonic region embedded in a subsonic
region causes downstream disturbances to be propagated upstream with a considerable time
lag, which results in significant out-of-phase forces. It has been known for quite some time [2]
that transonic flow conditions are critical for flutter, with the flutter dynamic pressure being
substantially reduced for Mach numbers near unity, in a phenomenon that has been called
‘transonic dip’ [3]. The severity of flutter at transonic speeds is linked to the presence of
moving shock waves over the wing surface [4]. From these considerations, it is clear that
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accurate flutter predictions depend on the ability of the computational fluid dynamics
procedure to predict correct shock strength and location, in a time-accurate fashion.

Transonic small disturbance equation (TSD) and full-potential equation (FPE) based
methods have been extensively used to compute complex configurations. These methods, in
some cases, have been coupled to interactive boundary layer analyses to allow solution of
problems where viscous effects can be included in a limited way.

For problems where substantial separation occurs, the TSD and FPE techniques coupled
with interactive boundary layer analysis are not adequate, since the concept of a boundary
layer is no longer applicable. For these cases, Navier–Stokes methods are clearly needed.
However, these are still computationally expensive and have seen limited practical use for
complete configurations due to this factor. This becomes especially evident for problems where
extensive computations are needed, such as the prediction of transonic flutter [3].

The present method is an extension of the work initiated by Sankar et al. [5], who developed
a zonal Navier–Stokes/full-potential method. The approach used here is to solve the FPE in
an outer zone, away from solid surfaces and viscous regions, and solve the Navier–Stokes
equations in an inner zone, where viscous effects are essential. This approach is schematically
illustrated in Figure 1. This results in a highly efficient solver that retains the accuracy of the
Navier–Stokes methodology near the solid surface, and the simplicity of a potential flow
solver away from solid surfaces.

The mathematical formulation used here is described in detail elsewhere [6] and only a brief
outline is presented next.

2. NAVIER–STOKES FORMULATION

The Navier–Stokes solver used in the present work was developed by Sankar et al. [7]. The
vector form of the full Reynolds-averaged, 3D Navier–Stokes equations based on an arbitrary
curvilinear co-ordinate system can be written in non-dimensional form as:

Qt+Ej+Fh+Gz=
1

Re
(Rj+Sh+Tz), (1)

Figure 1. Partitioning of computational domain into inner and outer zones.
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where Q is the vector of unknown flow properties; E, F and G are the inviscid flux vectors; R,
S and T are the viscous flux vectors and Re=r�a�c/m� is the Reynolds number based on the
free stream speed of sound a�, density r�, viscosity m�, and reference chord c.

The time derivative, Qt, of Equation (1) is approximated using two-point backward
difference at the new time level n+1. All spatial derivatives are approximated by standard
second-order central differences and are represented by the difference operators d. The
streamwise and normal derivatives, Ej and Gz, are evaluated implicitly at the new time level
n+1. The spanwise derivative, Fh, is evaluated explicitly at the old time level n but uses the
n+1 values as soon as they become available. This semi-explicit treatment of the spanwise
derivative enables the scheme to solve implicitly for DQn+1 at all points at a given spanwise
station at a time. To eliminate any dependency the solution may have on the sweeping
direction, the solver reverses the direction of spanwise sweeping with every sweep.

The viscous terms Rj, Sh and Tz are evaluated explicitly, using half-point central differences
denoted here by the difference operator d( , so that the computational stencil for the stress terms
uses only three nodes in each of the three directions. Explicit treatment of the stress terms still
permits the use of large time steps since the Reynolds numbers of interest here are fairly large.

With the above described time and space discretisations, Equation (1) becomes:

DQn+1+Dt(djEn+1+dhFn,n+1+dzGn+1)=
Dt

Re
(d( jRn,n+1+d( hSn,n+1+d( zTn,n+1). (2)

Application of Equation (2) to the grid points leads to a system of non-linear, block
pentadiagonal matrix equations for the unknown DQn+1=Qn+1−Qn, Equation (2), since the
convection fluxes E, F and G are non-linear functions of the vector of unknown flow
properties Q. Equation (2) is then linearised using the Jacobian matrices A=(E/(Q and C=
(G/(Q. This results in a system of linear, block pentadiagonal matrix equations, which is
considerably expensive to solve. The approach used here is to employ an approximate
factorisation and the diagonal algorithm of Pulliam and Chaussee [8], to diagonalise A and C.
This approach yields:

Tj
n[I+DtdjLj

n]Nn[I+DtdzLz
n](Tz

−1)nDQn+1=RHSn,n+1. (3)

The solution of Equation (3) involves two block tridiagonal systems where the blocks are
diagonal matrices.

The use of standard central differences to approximate the spatial derivatives can give rise
to the growth of high frequency errors in the numerical solution with time. To control this
growth, a set of second-/fourth-order non-linear, spectral radius based, explicit artificial
dissipation terms are added to the discretised equations.

A slightly modified version of the Baldwin–Lomax algebraic turbulence model is used,
where the maximum shear stress is used instead of the wall shear stress because in the vicinity
of separation points, the shear stress values approach zero at the wall.

3. FULL-POTENTIAL FORMULATION

The full-potential solver used in the present work was developed by Sankar et al. [9]. The 3D
unsteady compressible potential flow equation, in a body-fitted co-ordinate system, may be
written as a second-order hyperbolic partial differential equation for the perturbation potential
8 :
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where r is the density; U, V and W are the contravariant components of velocity and J is the
Jacobian of the transformation between Cartesian and curvilinear co-ordinates.

At a given time level n, the disturbance velocity potential 8 and its temporal derivative 8t

are known, and consequently all velocity components, speed of sound and density are also
known. Equation (4) is a partial differential equation for 8 with non-linear coefficients. To
circumvent the non-linearities, the coefficients r, a2, J, U, V and W appearing on the
left-hand-side, and the density r appearing on the right-hand-side of Equation (4) are
computed at the time level n. The remaining quantities in (4) are kept at the new time level
n+1. In the process of evaluating the contravariant velocities U, V and W, two-point central
differences are used to evaluate the derivatives of 8 and the transformation metrics at the grid
points and locations mid-distance between the grid points.

The temporal derivatives on the left-hand-side of Equation (4) are discretised using
two-point backward finite difference operators. The mixed space–time derivatives appearing in
(4) are discretised using two-point upwind-differencing for the spatial derivative, and two-point
backward-differencing for the temporal derivative. The flux-like terms appearing on the
right-hand-side of (4) are evaluated using two-point central-difference formulas with half
intervals, using the density r computed at the time level n, while the contravariant components
of velocity are computed using mixed information from time level n and the new time level
n+1, in order to reduce the number of diagonals in the final matrix of coefficients.

In order to maintain numerical stability in regions of supersonic flow, the numerical
formulation must be constructed in such a way that it is consistent with the physical domain
of dependence. For that purpose, the artificial compressibility method is used. Here, the
density values r that appear in (rU/J) on the right-hand-side of Equation (4) are biased in the
direction of the flow.

When the above discretisations are employed, at each grid point a linear equation results for
the change in the solution in two consecutive time steps D8n+1=8n+1−8n. Application of
this linear equation at the grid points result in a sparse pentadiagonal matrix system that may
be expressed as:

[M ]{D8}n+1={R}n. (5)

The matrix [M ] is approximately factored as the product of two sparse lower ([L ]) and upper
([U ]) matrices each having four diagonals, with their elements recursively related to the
coefficients of the matrix [M ]. The solution to Equation (5) is then obtained using a two-step
procedure.

4. NAVIER–STOKES/FULL-POTENTIAL COUPLING

A typical partitioning of the domain into an inner zone and an outer zone is illustrated in
Figure 1. The plane k=KMATCH corresponds to the interface between the inner zone and
the outer zone. Previous applications of the hybrid NS/FPE solver to an iced wing configura-
tion showed an oscillatory behaviour in convergence histories that indicated false reflections
from the Navier–Stokes/full-potential interface. Similar numerical phenomena were observed
in the past with respect to far-field boundary conditions: Acoustic waves travelled from the
solid surface to the outer boundary and were reflected back to contaminate the solution and
delay convergence [10]. The spurious waves responsible for the oscillatory convergence
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behaviour need to be eliminated. In unsteady flows this is even more important since these
spurious waves will compromise the time accuracy of the solution.

Non-reflecting far-field boundary conditions would not be directly applicable to the viscous/
inviscid interface discussed here because perturbations in one zone must be transmitted to the
other zone. The disturbances in the inner region should contribute to the outgoing waves only,
while the disturbances in the outer region should contribute to the ingoing waves only, so that
there is no reflection at the interface.

Following a development analogous to Giles’ derivation of approximate non-reflecting
boundary conditions [11], a set of characteristics c normal to a z=constant surface was
obtained. These characteristics were related to small perturbations on the primitive variables.
The resulting characteristic equations are integrated according to the signs of the correspond-
ing eigenvalues. This corresponds to the eigenvalue splitting Lz=Lz

+ +Lz
− and corresponding

characteristic splitting c=c+ +c−:

ct
+ +Lz

+cz
+ =0 , ct

− +Lz
−cz

− =0. (6)

For the Navier–Stokes solver, the vector Q at the viscous/inviscid interface is updated using
the characteristics obtained from the integration of Equation (6). For the full-potential solver,
two of the characteristics are expressed in terms of the Riemann invariants, which are
computed according to the signs of the corresponding eigenvalues. The flow properties at the
interface are then updated from the Riemann invariants.

The above procedure has been successful in suppressing the oscillatory behaviour observed
in previous version of the hybrid method. Although the procedure is strictly valid only for
steady flows [6], it was used also for unsteady flows with results similar to those obtained by
full Navier–Stokes computations.

5. RESULTS AND DISCUSSION

In the present work, the F-5 wing in transonic flow undergoing pitch oscillations was
investigated. This is a very rigorous test for the present method, due to the development of
shock waves that cross the viscous/inviscid interface. The interface boundary conditions are
therefore required to propagate significant disturbances. In the unsteady flow simulations,
these disturbances have to be propagated in a time-accurate fashion, which presents an even
more rigorous test. The experimental results used here were obtained by Tijdeman et al. [12]
who measured steady and time-dependent pressures at eight spanwise stations.

The computational grid used in the present study is illustrated in Figure 2. The Navier–
Stokes and full-potential solvers were interfaced so that about half of the number of points
were located in each zone.

5.1. Steady flow simulations

Steady pressure coefficient (CP=2p/r�V�2 ) distributions for M=0.95, zero angle of attack,
at spanwise stations 35.2, 72.1 and 97.7% are shown in Figure 3. Here the dominating feature
is the shock that forms over most of the wing, on both upper and lower surfaces. The upper
surface shock is stronger and aft of the lower surface shock. These features were well-predicted
by the current method. The suction peaks and location of matching upper and lower surface
pressures are again well-predicted, except at the station 97.7%, where the experimental data
indicate a lower suction peak. This test case was demanding in the sense that the shock crosses
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Figure 2. Computational grid for the F-5 wing.

the Navier–Stokes/full-potential interface, and the results presented here indicate that the
hybrid method is able to predict adequately both shock location and strength even when the
discontinuities due to the shock are propagated through the Navier–Stokes/full-potential
interface. Further evidence to support this conclusion is presented in Figure 4, where the
density contours at station 81.7% of span are shown. In this figure, the Navier–Stokes/full-po-
tential interface is drawn to facilitate the analysis. It can be seen that the contours smoothly
cross the interface, and in particular the shock is well-captured across the interface.

The results presented here show that the hybrid method can be successfully applied to steady
transonic flows, even when the shock crosses the Navier–Stokes/full-potential interface. The
differences between the computed and measured data are of the same order of, or lower than,
the more costly Navier–Stokes solutions presented by other researchers [13].

5.2. Unsteady Flow Simulations

Unsteady transonic flows are very challenging to the present method, due to the presence of
strong disturbances generated by unsteady shock motion, which need to be propagated
through the Navier–Stokes/full-potential interface in a time-accurate fashion.

For the unsteady flow simulations presented here, the Mach number was 0.95. The wing was
in pitching oscillations with a frequency of 40 Hz about half-chord, and around a0=0°.

Under these pitching oscillations, the F-5 wing deforms aeroelastically. During the investiga-
tion reported by Tijdeman et al. [12], the wing vibration mode was measured for the various
test runs using eight accelerometers. These measurements were used to obtain an approximate
analytical expression for the vertical wing displacement at various points, assuming no
chordwise deformation (rigid rotation) and parabolic spanwise deformation. This approxima-
tion to the elastic deformation allows a consistent representation by a rigid rotation about the
node corresponding to each spanwise station. The nodal line corresponding to the case
presented here is illustrated in Figure 5, from Tijdeman et al. [12].

The non-dimensional time step was 0.005. An additional computation to assess the effect of
the time step was made with a non-dimensional time step of 0.002. The real and imaginary
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Figure 3. Steady surface pressure distributions, M=0.95.
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Figure 4. Density contours at 81.7% span, M=0.95.

parts of the unsteady pressure coefficient distributions at spanwise stations 35.2, 72. 1 and
97.7% are shown in Figure 6. As occurred in the previous test case, at all spanwise stations,
strong leading edge peaks are present in the lower surface both in the in-phase and
out-of-phase component and they seem to be well-predicted by the present method. The steady
flow results, shown in Figure 3, indicate a strong shock on both upper and lower surfaces
around 80% of the chord. The experimental data for the unsteady case, seen in Figure 6, show
significant peaks around this chordwise location, mostly in the real (in-phase) component, but
also in the imaginary (out-of-phase) component. These peaks are very localised, which
indicates that they result more from shock strength variations than shock movement. The
numerical results presented in Figure 6 show that the present method was unable to correctly
predict the peak in the real part, but predicted the peak in the imaginary part. The
computations with a smaller time step show some improvement in the real part, which indicate
that the time step might have to be further reduced to yield a better correlation. Further
reductions in time step were not attempted because of the large CPU resources that would be
needed. It should also be noted that the current coarse grid presents some smearing in the
shock, therefore small changes in the shock strength are not likely to be well-captured, even
with a smaller time step.

Figure 5. Nodal line.
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Except for the above discussed discrepancy, the unsteady pressure coefficient distribution is
well-predicted. It should be noted that this is a very rigorous test for the present method, due
to the strong shock crossing the Navier–Stokes interface, as seen in Figure 4. The results
presented here indicate that the discrepancies observed in this test case are inherent to the
Navier–Stokes module, and can probably be overcome by using an upwind Navier–Stokes
module capable of capturing sharper shocks.

Overall, the unsteady pressure coefficient distributions correlate well with experimental data
and are similar to those obtained with equivalent full Navier–Stokes computations, with a
fraction of the computational cost. The savings in CPU time were found to depend on the
vector capability of the CPU, ranging from 27% on the Cray Y/MP-L up to 40% on a HP
Apollo 730 workstation.

Figure 6. Unsteady surface pressure distributions, M=0.95, f=40 Hz.
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Figure 6 (Continued)

6. CONCLUSION

An improved hybrid Navier–Stokes/full-potential method has been successfully applied to
transonic steady and unsteady flow around an F-5 fighter wing. It was found that the present
technique allowed flow parameters to change smoothly across the viscous/inviscid interface.
Pressure coefficient distributions agreed very well with experimental data. It should be noted
that the shocks considered here have been virtually normal to the Navier–Stokes/full-potential
interface. For this reason, further investigations should be carried out before applying the
present method to flow situations where significantly oblique shocks are present.

For the computations presented here, the two zones had the same number of grid points.
With this configuration, the savings in total CPU time were found to depend on the vector
capability of the CPU, ranging from 27% on the Cray Y/MP-L up to 40% on a HP Apollo 730
workstation. For steady flow cases, the computational savings were slightly higher, because the
hybrid method presented convergence rates higher than the full Navier–Stokes method.
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The location of the viscid/inviscid interface is a major factor in determining the actual
savings for practical applications. For problems where massive separation occurs, this interface
would have to be located farther away from solid surfaces, with a larger number of points in
the inner zone. For these cases, the savings in CPU times would be reduced and might not be
significant enough to justify the use of the present method. For problems where little or no
separation occurs, the interface can be located closer to solid surfaces, so that less than half of
the grid points would be located in the inner zone, and the computational savings could be
increased even further. For helicopter rotor blades, dynamic partitioning between the viscous
and inviscid domains [14] allows optimal computational savings.

The present hybrid technique, which combines the accuracy of Navier–Stokes methods in
the viscous regions with the economy of potential flow methods in inviscid regions, may be
used as a stepping stone for more ambitious efforts involving aeroelastic and unsteady
aerodynamic analysis of complete aircraft configurations.
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